Sprayable Antibacterial Film: a Nanosilver Composite

Nathan Cloeter, Luis Correa, Benjamin Lee, Matt Reilly, Mercedes Valero

Materials Science and Engineering

Senior Capstone Design

Spring 2014

Overview

- 1. Introduction
 - Motivation
 - Design Goals
- 2. Technical Approach
- 3. Design
 - Film design
 - Solution design
- 4. Experimental Processes and Data
- 5. Prototype Process
- 6. Design Conclusions
- 7. Project Summary

Motivation

2,700 to **4,200** bacterial units^{*}

- Nanoparticles and medicine
 - Tailorability
 - Particle distribution
 - High surface area
- Nanoparticle-Polymer composites
 - Release-killing and capturekilling mechanisms
 - Coatings and films

* - Wall Street Journal Study, 2012

Design

Chitosan-Nanosilver Composite

Chitosan

- Simple polysaccharide
- Heavily researched for antibacterial properties
- Can synthesize nanosilver *in situ*
- Nanoparticle dispersion

Nanosilver

- Broad-spectrum antibacterial capabilities
- Tailor size and distribution
- Multiple simple synthesis methods

Design Goals

- **1**. Film that adheres to Al_2O_3 the iPhone surface
- 2. Maximum 50µm thickness
- 3. Spray application
- 4. Overnight drying
- **5.** Maximum colony forming units of 5×10^5 /ml

Prototype

Technical Approach - Solution

- Chitosan solubility
 - Soluble in acetic acid
 - Easy to dissolve no heat and minimal stirring
- Viscosity increases with added chitosan
 - Needs to be experimentally determined
 - Sprayable liquid viscosity max. 200 cps (non-pressurized)
 - Assume nanoparticles are too small to affect viscosity

Nanoparticle settling (Stoke's law)

$$V_0 = \frac{d^2(\rho_s - \rho) g}{18\mu}$$

Introduction

Technical Approach - Nanoparticles

• Synthesis

Step A: The adsorption of silver ions onto chitosan.

R-NH2 + H+ \Rightarrow R-NH3Step B: The formation of silver NPs-chitosan bioconjugates.R-NH2 + Ag^+ \rightarrow R-NH2Ag^+ $2AgOH \Rightarrow 2Ag^+ + 2OH^- \Rightarrow Ag_2O + H_2O$ R-NH3^+ + Ag^+ \rightarrow R-NH2Ag^+ + H^+ $Ag_2O + R'CH_2OH \rightarrow R'CHO + 2Ag + 2H_2O$ R-NH2Ag^+ + H2O \rightarrow AgOH + R-NH3 $Ag_2O + R'CHO \rightarrow R'COO^- + 2Ag + 2H_2O$

Chitosan allows for good dispersion due to complexing

Technical Approach - Nanoparticles

- Silver ions are the means for antibacterial activity
 - Greater concentrations of silver nitrate
 - Greater surface area allows for greater interaction
- Tradeoff: Gibbs-Thomson

$$r^* = \frac{2\gamma ln(C/C_0)}{k_b T}$$

 Changes in temperature also affect particle size
Experimentally analyze both temperature and concentration for particle size and antibacterial efficacy

Antibacterial Nature of Silver

Film Design

Critical Design Aspects

- Adhesion
 - Depends on the Al₂O₃ surface topography
 - Addition of levan to samples
- Antibacterial efficacy

- Movement of silver ions
 - Aqueous solution
 - Hydration with PEG (polyethylene glycol)
 - Dispersion, near the surface of the film
- Relation to nanoparticle size
 - Design for size control

Film Design

- Chitosan
 - Even arrangement, non-agglomerating

• Adhesion: van der Waals forces

$$A = \pi^2 C \varrho_1 \varrho_2 \qquad W = \frac{A}{12\pi D^2}$$

(~ 10^{-19} - 10^{-20} J)
$$F = \frac{A}{6\pi D^3}$$

Introduction

Film Design

- Adhesion:
 - Mechanical adhesion
 - AFM analysis of iPhone increased surface roughness promotes mechanical adhesion

Solution Design

• Viscosity

Intro

- Maximum sprayable viscosity: **200cp**
- Settling during drying:
 - Design: $50\mu m$, nanoparticles $\sim 50nm$
 - Wet thickness : 63µm
 - Maximum settling velocity: $13\mu m/8hr = 1.625\mu m/hr$

$$V_0 = \frac{d^2(\rho_s - \rho) g}{18\mu}$$

• Ideal settling viscosity: 113cp

$$\mu_{solution} = 0.8 \mu_{spray} + 0.2 \mu_{settle} = 182.6 \text{ cp}$$

Experimental Procedures

1. Synthesize nanoparticles (26mM and 52mM, 25°c – 95°c)

2. Make films

Introduction

Approach

Design

Experimental

Prototype

Conclusions

Summary

15 SWERSIT

Solution Testing

Dynamic Light Scattering (ZetaSizer)

Introduction

Approach

Experimental

Design

Prototype

Conclusions

Summary

6 SHUERSITL

Solution Testing

Sample	Run 1	Run 2	Run 3
26 mM #1	124.3	123.8	123.7
52 mM #1	120	119.1	119.6
26 mM #2	155.5	154	154.2
52 mM #2	158.8	161.2	159.2
26 mM #3	174.6	175	174.7
52 mM #3	158.5	158.2	157.7

Viscometer

INKFIELD

DV-E VISCOM

Introduction

Experimental Procedure

3. Grow bacteria solution

4. Add bacterial agar to film (0h and 24h)

5. Place film in broth and grow bacteria from film

Introduction

Approach

Design

Experimental

Prototype

Conclusions

Summary

Experimental Procedure

6. Spread bacteria on agar film

7. Grow and count bacteria cultures

Introduction

Approach

Design

Experimental

Prototype

Conclusions

Summary

Antibacterial Data

- Agar slurry: ~3x10⁶ cells/ml
- Dilutions: (10µl of agar/600µl broth)
 - 4.9x10⁴ cells/ml, 806 cells/ml, 13 cells/ml

Colony Counts - 95°c synthesized nanoparticle film

Introduction

Antibacterial Efficacy

CFU/ml

<u>Percent reduction:</u> Chitosan – 100% 26mM – 95.7% 52mM – 97.9%

Introduction

Experimental Obstacles

- UV sensitivity: some solution samples ruined before film development
- Film development depleted solution quantities for viscosity measurements
- Limitations with laboratory equipment and time
 - Limited amount of nanoparticle solution synthesized

Experimental

- Week-long antibacterial testing process
- Antibacterial testing is not always perfect

Design

Introduction

Approach

• Some samples exhibited no bacterial cultures in the 0h control, indicating lack of initial bacteria in agar slurry

Prototype

Conclusions

Summary

Prototyping

- fFilm that adheres to Al_2O_3 the iPhone surface
- □ Maximum 50µm thickness
- Spray application
- 🗙 Overnight drying
- Maximum colony forming units of 5x10⁵/ml

Prototyping

<u>Adhesion</u>

Thickness: avg. 66.5µm

Adhered to aluminum foil

Thin, but not as thin as design goal

Introduction

Approach

Design

Experimental

Prototype

Conclusions

Summary

Prototyping

Spray Application

Good spray dispersion

Improper wetting: Al₂O₃ surface tension

Overnight Drying

All films were made overnight and all showed proper drying

Introduction

Approach

Design

Experimental

Prototype

Conclusions

Summary

25 SUNFRSIT

Design Conclusions

- 10mg chitosan in 1% acetic acid is a sprayable solution
 - Regardless of nanoparticle concentration
 - Stirring of synthesis solution decreases viscosity
 - Could add more chitosan to solutions for increased efficiency

Design Conclusions

- Nanoparticle sizing
 - Shows some relation to Gibbs-Thomson
 - Not enough data to correlate to antibacterial properties

Design Conclusions

- Spray application
 - Surface energy of Al₂O₃ is too high poor wetting
 - Design for another surface (commercial polymers have lower surface energies) → coating plastic cases
 - design another application method → aerosols or manual spreading via solution

Project Summary

- Technical approach
 - Gibbs-Thomson effect
 - Solution viscosity
 - Nanoparticle size, distribution, ionization
- Experimental approach
 - Viscosity measurements
 - DLS measurements
 - Antibacterial efficacy
- Prototype
 - Accomplished film development and antibacterial properties
 - Film application method was not as designed

Design

UNIVERSITY of MARYLAND • THE DEPARTMENT of MATERIALS SCIENCE & ENGINEERING

Thank You

Introduction

