

Team H2 – Final Report ENMA490 Economical Photocatalytic Water-Splitting

Norena Beaty, Nick Faenza, Tanner Hamann, Owen McGovern, Santiago Miret, and Mark Reese

Motivation and Material Science

- Current Energy System
 Unsustainable
 - Fossil fuels vs. hydrogen

http://www.world-nuclear.org/uploadedImages/org/info/Energy_and_Environment/primaryenergydemand.gif?n=7925

- Nanoparticle Catalysts
- Bandgap Engineering
 - Z-scheme system: photocatalyst (oxidation) and co-catalyst (reduction)

Ethics

BENEFITS

- Fabrication Process
 - Non-toxic
 - Minimal Waste
 - Scalable

https://encryptedtbno.gstatic.com/images?q=tbn:ANdg GcS9qwm5TJGYbFMHSwbK_DIYoLuX 3pRTDSEWc5WrTPV4_5pze5-u

ETHICAL CONCERNS

- Potential health dangers of nanoparticles not understood
- Risks of water contamination

http://upload.wikimedia.org/wikipedia/ commons/thumb/8/8a/Nrborderborder entrythreecolorsmayo5-1-.JPG/300px-Nrborderborderentrythreecolorsmayo5 -1-.JPG

Intellectual Merit

- Minimization of recombination effects
- Novel combination of catalyst materials
 - ZnWO₄ and NiO_x
- NiO formation on a ZnWO₄ substrate
 - Kinetic Monte Carlo Simulation

Technical Approach

DESIGN

Design Factors

- Size
- Crystallinity
- Surface Area
- Catalyst Material Combination
- Bandgap Engineering

SIMULATION

Chidathon d'Hiddel; 30 Degrees CA, 11065 Sec

Perform Density Functional Theory (DFT) Calculations

• Determine band edge placements

Kinetic Monte Carlo (KMC) Simulations

• Improve Fabrication Conditions

DFT Calculations

- Band edge placements and band gap of materials correlate directly with water-splitting capability of the material
 - Minimum band gap for watersplitting w/o voltage: 1.23 eV
 - CBMin < H₂O/H₂ level, VBMax > H₂O/O₂ level
 - Variation as a function of NiO
- adsorption angle on ZnWO4 Vienna Ab Initio Simulation Package (VASP)
 - Ab initio approach is scalable suited to handling large data sets

A schematic diagram of possible band level arrangements for watersplitting photocatalysts. a) Favorable band level arrangement b) unfavorable VBM position c) unfavorable CBM position. (Wu 2011).

DFT Calculations

- Original plan for surface calculations had to be scaled down to simpler bulk calculations to determine band gap
- The cells of the materials each had to be relaxed so the minimum energy configuration could be found
 - Lowest energy = most likely configuration

DFT Calculations

Table I: The calculated and experimental cell parameters for ZnWO4 and NiO.

Material	c/a (Calculated)	c/a (Expt.)	a (Calculated)	a (Expt.)
ZnWO4	1.223379	1.050508	4.744512	4.6925262
NiO	1.05	N/A	2.883756	N/A

Fabrication

- ZnWO4 synthesis
 - Sonicate Zn(NO₃)₂ and NaWO₄ mixture
 - Filter and wash mixture
 - Calcine for 4 hours at 500 °C
- Ni Deposition
 - 2 wt% Ni(NO₃)₂ is mixed with ZnWO₄ particles in DI water
 - Sonicate to aid mixing
 - The mixture is stirred at 80 °C until dry
 - The powder is calcined at 350 °C for 1 hour

Characterization

XRD

- Provided crystal size and composition
- 89 wt% ZnWO₄, 11 wt% Na₂WO₄
- ZnWO₄ avg. crystal size = 157 nm

SEM

- Shape, uniformity, and size
- Spherical and had some agglomeration
- Particle Size Analysis
 - Determines size distribution
 - Average particle size is around 120 nm
 - Unsure about size discrepancy
- Performance
 - Our testing procedure produced inconclusive results
 - Need a gas chromatograph

KMC Simulations

- Model oxidation of nickel nanoparticle
 - Diffusion
 - Chemical reactions
- Vary parameters
 - Particle diameter
 - Contact angle
 - Oxidation time
- Temperature
 Use to adjust fabrication process

Oxidation of Nickel, 30 Degrees CA, 0.0066 Seconds

Nickel nanoparticle (30 degree contact angle) oxidized for 0.0066 seconds: (0) Vacancy, (1) FCC nickel, (3) adsorbed molecular oxygen, (4) atomic oxygen, (5) oxygen bonded to nickel, (6) nickel bonded to oxygen.

KMC Simulations

Fraction of initial nickel atoms that were oxidized.

- Oxidation proceeds faster for smaller contact angle
 - 30 degrees: nearly fully oxidized
 - 60/90 degrees:
 saturates at low
 oxidation levels
 - 45 degrees: anomalous behavior

Conclusions

Design

- Optimized parameters from literature
- DFT
 - Determined minimum energy lattice parameters
- KMC
 - Preliminary models of nickel oxidation

Fabrication

Created high crystalline ZnWO₄ particles

Results

- Achieved high crystallinity and good composition
- Performance is inconclusive

Future Work

- Refine DFT and KMC Simulations
- Optimize Fabrication Procedure

Acknowledgements

Team H2 would like to acknowledge the following faculty and students for their generous support:

- Prof. Ray Phaneuf (Kinetics, Logistics)
- Prof. Oded Rabin (Fabrication)
- Prof. Eric Wachsman (Fabrication)
- Mr. Colin Gore (Fabrication)
- Prof. Isabel Lloyd (Characterization)
- Dr. Kai Zhong (Characterization)
- Dr. Robert Bonenberger (Characterization)
- Ms. Jane Cornett (Characterization)
- Mr. John Abrahams (Characterization)
- Prof. Ted Einstein (Simulation)
- Mr. Josue Morales (Simulation)
- Prof. Yifei Mo (Simulation)
- This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number OCI-1053575.
- Maryland Nanocenter.
- Department of Materials Science and Engineering