Woven Bamboo Composites

Michael Hughes, Brady Lindemon, Konnor Kim, Alex Kordell, Matthew Rice, Donald Stull

Outline

- Introduction
- Motivation
 - What will be designed
- Materials Science Link
 - Properties
 - Structure
 - Processing
- Environmental Impact
 - Renewable Resource
 - Energy Cost
- Simulations
 - FE model
 - Results
- Prototype
 - Fabrication Method
 - Testing
 - Results and Analysis
- Conclusion

Introduction

- Composites often used for high strength to weight ratio.
- Carbon Fiber popular material for woven and unwoven fiber reinforcement.
- Problems due to cost and environmental concerns.
- Bamboo proposed as alternative.
- Investigation of Bamboo by physical and computational experimentation.

Figure 1: Bamboo Stalks source:www.ignorancia.org

Motivation

- Carbon Fiber Woven composites
 - High Strength
 - Low Weight
 - High Fatigue Lifetime
- Problems
 - Expensive
 - Derived from Petroleum products
 - High Energy cost to produce
- Proposed Solution: Replace Carbon Fiber weave with woven Bamboo Fibers

Environmental Impact

- Energy cost of Carbon Fiber: 420MJ/ kg.
- Calculated cost of Bamboo Fibre Weave: 72MJ/kg.
 - Bamboo cost is bench cost, would decrease for large scale manufacturing.
- Lower energy mean lower. greenhouse emissions for energy.
- Composite derived from natural crop means it is renewable.

CO Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi 10.3334/CDIAC/00001_V2010.

Figure 2: CO₂ emissions by year Source: epa.gov/climatechange

Global Carbon Dioxide (CO) emissions from fossil-fuels 1900-2008

Relation to MSE

- Properties: Composite Materials
 - Composed of Matrix material and reinforcement particles or fiber.
 - Allows limited control of stiffness and ductility of material.
 - Controlled by volume fraction of matrix and reinforcement.
 Ec = Ef*Vf+Em*Vm

Equation 1: Elastic Modulus of a composite

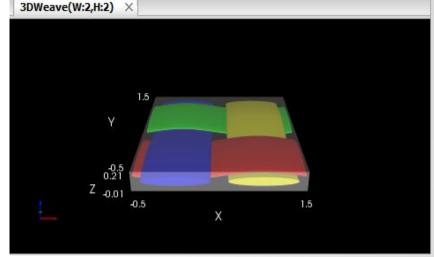
- Structure: Woven Layer
 - Designed composite more complicated suite woven structure.
 - Theoretically, stronger material due to increased displacement resistance from the weaving.

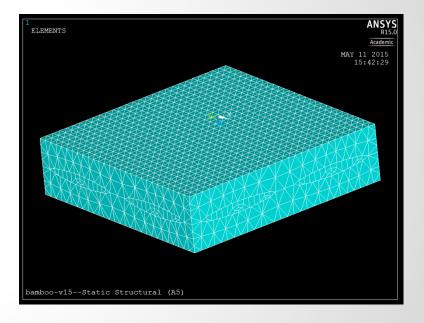
Finite Element Modeling

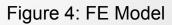
- Method for solving Partial Differential Equations (PBEs).
- Subdivides larger section into smaller sections that allow approximation of larger cumulative solution.
- Allows analysis of complex geometries.
- Construction of Elements using nodes.
 - Discrete points in structure that define elements and can be controlled. Called Meshing.
- Need to define proper boundary conditions.
 - Model dependent.

Building Finite Element Model

- Top Down Model using TexGen.
 - Creates desired geometry.
 - Space with defined pionts. Each of which are identified as either matrix or yarn.
 - Manual editing of faces and contract regions.
 - Importing of material properties.

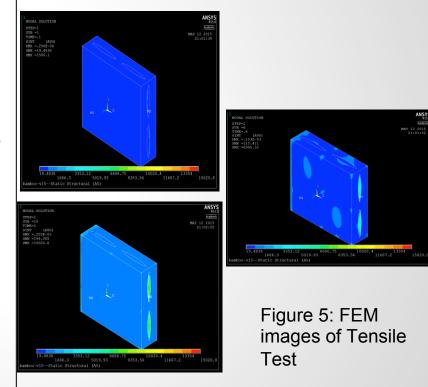


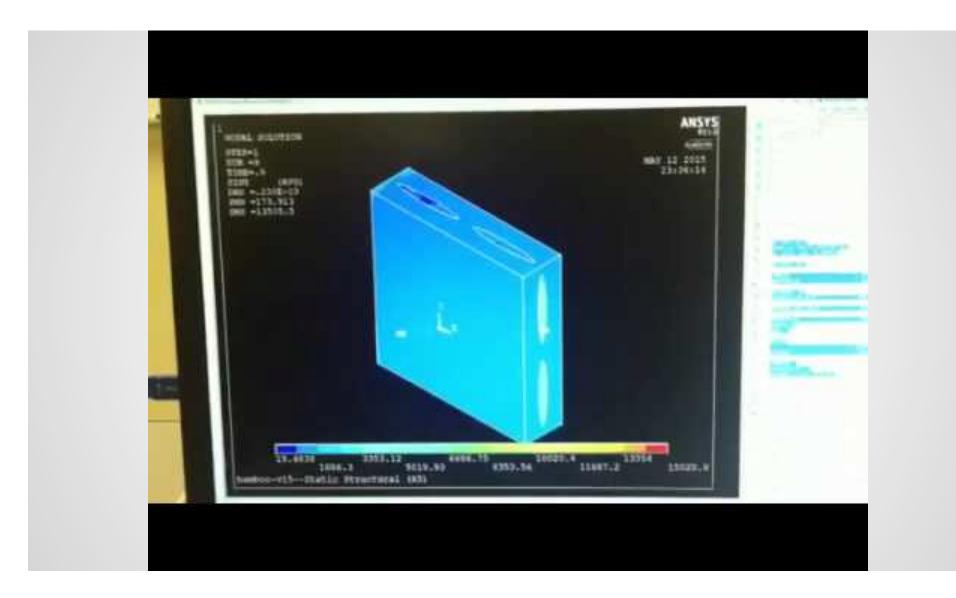

Figure 3: Generic 2D plane weave created with TexGen


Building Finite Element Model cont.

- Have Model, but not Finite element.
 - Meshing: Breaks geometry into discrete elements defined by nodes.
 - Different element types depending on the geometry of the element.
- Boundary Conditions:
 - Restricts the Models Degrees of Freedom.
 - Boundary Conditions of woven model.
 - Corner nodes and midpoint nodes of each face set to deform equally and opposite.
 - Setting these conditions also results in periodic boundary conditions.

Building Composite from Unit Cell


- Have a Unit Cell, but want to iterate to make full composite structure.
- Periodic boundary conditions allow copying of cell, as ending face of original cell becomes the beginning face of the next unit cell.
- ANSYS Script produces copy of current structure in any axial direction.



Testing of Modeled Composite

- Tensile Test:
 - Fixing of one face via constant equation.
 - Application of unidirectional force on opposite face.
 - Resulted deformation of model.
 - Had to use small iterative forces to keep model static.

Fiber Separation

•Harvested bamboo from a local garden

•Bamboo was split into sections and soaked in 0.1 M NaOH for 72 hours to aid in the delignification of the bamboo due to time concerns.

•The sections were soaked in water for 3 hours and rinsed several times to remove any remaining NaOH.

•Sections were dried at 120 C for 2 hours and then air dried for five days before separation of the fibers occurred.

•A roller mill was used to splinter the bamboo sections into fiber clusters; these were then further separated manually into single fibers.

Figure 7: Bamboo fibres drying

Figure 8: Dried fibers ready to be woven

Making the Composite

The fibers were organized by size and grouped into bundles of eight to be woven into the mat.
The weave was then inserted into a 3D printed mold filled with epoxy and allowed to cure for 24

Figure 9: Woven Bamboo mat

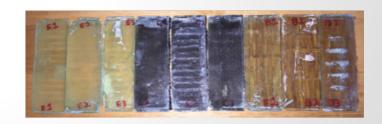


Figure 10: Composites

•We made similar samples using a carbon fiber weave as well as

hours.

Testing

- Tested our composite material using a tension test.
 - Utilized digital image correlation to measure strain.
- Wanted to do a 3 point bend test as well but our fiber volume fraction prevented us.

Figure 11: Prepped composites

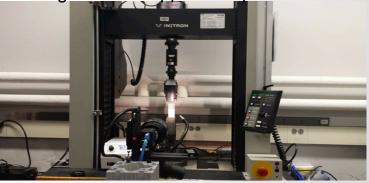


Figure 12: Composite in Tensile Test

Testing Results

- Tensile Tests performed at Army Research Laboratory
- Elastic Modulus values:
 - Carbon Fiber: 11.73
 - Bamboo: 29.73 MPa
 - Epoxy: 35.463 MPa
- Ultimate Tensile Strength
 - Carbon Fiber: 7.1607 MPa
 - Bamboo: 1.235 MPa
 - Epoxy: 1.37 MPa

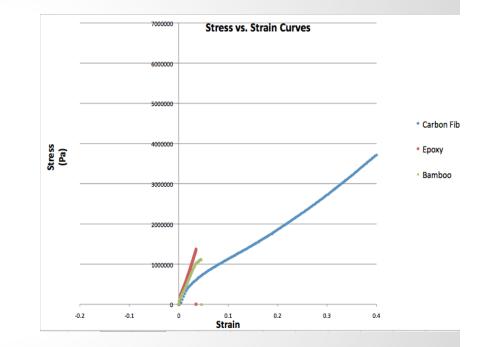


Figure 13: Tensile Test of Samples

Testing Results cont.

- Due to budgetary concerns we had to settle on a non ideal epoxy.
 - Led to delamination of our sample.

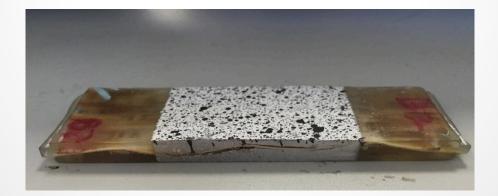


Figure 14: Example of Delamination

Conclusion

- Bamboo composites are a promising future renewable material.
- Need more extensive modeling efforts to determine ideal weave properties, possibly utilizing bottom up approach for more controlled model.
- Established proof of concept with FE model.
- Better fabrication method using vacuum bagging to make multiple layer composite.